**How To Write Proofs**

by Larry W. Cusick

**Publisher**: California State University, Fresno 2009

**Description**:

Proofs are the heart of mathematics. If you are a math major, then you must come to terms with proofs--you must be able to read, understand and write them. What is the secret? What magic do you need to know? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Proofs and Concepts: the fundamentals of abstract mathematics**

by

**Dave Witte Morris, Joy Morris**-

**University of Lethbridge**

This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.

(

**13525**views)

**Proof in Mathematics: An Introduction**

by

**James Franklin, Albert Daoud**-

**Kew Books**

This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.

(

**9175**views)

**A Introduction to Proofs and the Mathematical Vernacular**

by

**Martin Day**-

**Virginia Tech**

The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.

(

**19465**views)

**Fundamental Concepts of Mathematics**

by

**Farshid Hajir**-

**University of Massachusetts**

Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.

(

**15648**views)